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Does the Dose-Solubility Ratio Affect
the Mean Dissolution Time of
Drugs?
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Purpose. To present a new model for describing drug dissolution. On
the basis of the new model to characterize the dissolution profile by
the distribution function of the random dissolution time of a drug
molecule, which generalizes the classical first order model.
Methods. Instead of assuming a constant fractional dissolution rate,
as in the classical model, it is considered that the fractional dissolution
rate is a decreasing function of the dissolved amount controlled by
the dose-solubility ratio. The differential equation derived from this
assumption is solved and the distribution measures (half-dissolution
time, mean dissolution time, relative dispersion of the dissolution time,
dissolution time density, and fractional dissolution rate) are calculated.
Finally, instead of monotonically decreasing the fractional dissolution
rate, a generalization resulting in zero dissolution rate at time origin
is introduced.

Results. The behavior of the model is divided into two regions defined
by g, the ratio of the dose to the solubility level: ¢ < 1 (complete
dissolution of the dose, dissolution time) and ¢ > | (saturation of the
solution, saturation time). The singular case ¢ = 1 is also treated and
in this situation the mean as well as the relative dispersion of the
dissolution time increase to infinity. The model was successfully fitted
to data (1).

Conclusions. This empirical model is descriptive without detailed
physical reasoning behind its derivation. According to the model, the
mean dissolution time is affected by the dose-solubility ratio. Although
this prediction appears to be in accordance with preliminary application,
further validation based on more suitable experimental data is required.

KEY WORDS: dissolution; model; fractional dissolution rate; mean
dissolution time; relative dispersion.

INTRODUCTION

A fundamental feature of the drug dissolution theories,
which were developed as an extension of the Noyes-Whitney
model (2), is the constant proportionality of dissolution rate to
the concentration difference (C; — C(r)) between the solubility
C, and the concentration of drug in the dissolution medium at
time ¢, C(1) (see e.g., (3)). In the context of dissolution time
distributions, this simple first order process implies exponen-
tially distributed dissolution times, i.e., a time-constant frac-
tional dissolution rate (well-mixed model). Furthermore, the
mean dissolution time (MDT ) is then independent of the dose-
solubility ratio. We hereby propose a more flexible and natural
extension of this model assuming the fractional dissolution

! Institute of Physiology, Academy of Sciences of the Czech Republic,
Videnskd 1082, 142 20 Prague 4, Czech Republic.

2 Section Pharmacokinetics, Department of Pharmacology, Martin
Luther University Halle-Wittenberg, 06097 Halle, Germany.

Research Paper

rate is not constant, but a decreasing function of the amount
dissolved. With regard to the underlying assumptions, this
approach is analogous to the discrete time model developed by
Dokoumetzidis and Macheras (4) and it can simply be consid-
ered as the continuous-time counterpart of their model.

It is the purpose of this report to show that this new
empirical dissolution model, in contrast to the classical model,
implies an increase in MDT if the dose gets near to the saturation
(or solubility) level, reflecting the departure of the dissolution
time distribution from the exponential distribution which is
inherent for the classical model (denoted in the following by
EX-—exponentially distributed). The departure is also reflected
by an increase of variability characterized by relative dispersion
of the dissolution time which remains always greater than one.
Both the new function and the conventional EX model are fitted
to in vitro dissolution data of a poorly soluble drug (1). As
expected, the new model is characterized by larger MDT.

THEORY AND RESULTS

The classical EX model (as extensions of the Noyes-
Whitney equation) is characterized by a constant fractional (or
relative) dissolution rate

dd)
dt

k(t) = kex = T— o0 o0

m
where ®(¢r) = A(t)/D denotes the fraction of drug dissolved up
to time ¢ (A denotes the amount of drug dissolved and D is the
dose, which finally becomes completely dissolved). In probabi-
listic terms, the fractional dissolution rate is a conditional proba-
bility of being dissolved at time [¢, # + A) under the condition
that the dissolution has not taken the place before ¢. If we want
to generalize this first order model, we can assume the fractional
dissolution rate is a function of ®(r), and consequently of time
t, k(t) = fAP()]. The simplest specification of f which contains
the EX model as a limiting case is a linear function,

k) = AP®] = r(1 — qP(®), 2

where g is the dose-solubility ratio, g = D/8, denoting the
amount of drug in the medium which cortresponds to solubility
by 6, and r = k(0) represents the initial fractional dissolution
rate. Now k(r) approaches r for ®(f) — 0 or ¢ — 0, which
corresponds to the classical first order case where r = kgx. If
we substitute equation (2) into (I) we get

dift) = 1 — ®@)1 — qP@)), ®©0) = 0. 3)

Obviously for ¢ — 0, equation (3) describes a single-compart-
ment model and all the conclusions for (3) have to have this
limiting behavior. Intuitively, we may expect that for ¢ < I all
the dose can dissolve and for ¢ > 1 the solution gets saturated.
The case ¢ = 1, which is singular from a practical point of
view, is a limiting case for which the solution gets saturated
when all the dose dissolves. The solution of equation (3) is

_ exp(rt(l — q)) — 1
exp(ri(l — q)) — q’

6] 4)
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0724-8741/99/0900-14708 16 (/0 © 1999 Plenum Publishing Corporation 1470



Mean Dissolution Time vs. Dose-Solubility Ratio

1 forg=1
(=) = {l/q forg> 1 )
Solution (4) takes the form
o) = 2 6
® 1+ ©)

for ¢ = 1. The property (5) confirms that for g < 1 all the
amount is dissolved, while in the second case the saturation
level 1/q is achieved. These are two qualitatively different
situations and in the following text we treat them separately.
An example of a mechanistic model which produces the non-
classical behavior (Eq. 3) is presented in the Appendix.

Complete Dissolution (g = 1)

The function ® given by (4) behaves as a cumulative
distribution function of a random variable denoted by T, and
called the dissolution time. It can be interpreted as a probability
that a randomly selected molecule of the drug will be in dis-
solved form before time ¢. Solving (4) for unknown ¢ and with
left-hand-side equal to 1/2, the half-dissolution time, t,,, can
be calculated,

1

hn =g In(2 — ¢), )
specially, for g = 1, t;, = 1/r. For ¢ ~ 1 the dependency of
half-dissolution time is approximately linear with respect to g
and hyperbolic with respect to r, t,, ~ 1/r — (1 — ¢)/(2r), see
Fig. 1. In the same way as (7) other percentiles can be evaluated.

The probabilistic interpretation of (4) permits the calcula-
tion of all other commonly used characteristics. For the mean
dissolution time, MDT,, we have

MDT, = -rl_q In(1 — g), ®)

which can be compared with the half-dissolution time given
by (7), it holds that ¢, < MDT, for all 4. For ¢ — 1,
MDT, — o and the difference between the mean and the half-
dissolution time is mostly pronounced in this region (see Fig.
2). For the second moment of the dissolution time, E(T3), holds

E(T2 = __2_ i ﬂl_( 1))
¢ q(l — r2 & K

and using (8) and (9) the relative dispersion (coefficient of

variation) can be calculated,

SXa
29 35
k=
(1 — pln’(1 — g
We see that CV 3 does not depend on r and after some calculation
it can be shown that CV3 > 1 for any ¢ (Fig. 3a). Brown (5)
(see also (6)) proposed a measure A, based on CV3 which
can be used for representing the departure of the distribution

(4) from the exponential distribution (the single compartment
model),

CV3= 1. (10)

CVi—-1
CVi+ 1’
an

Acxp = sup |®() — (1 — exp(—/MDTgy))| =
=0
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The difference between the dependency on g of the distribution
functions is illustrated in Fig. 3b.

Not only the moments, but also the fractional dissolution
rate (hazard function), k(f) can be calculated using (4). The
probability density of T, is

r(1 — @)’ exp(ri(1 — q))

= s 12
A = = (il — 9)) — @Y (12)

and k(1) = &b )/(1 — ®(1)) implies
ki) = rd - 9) (13)

1 ~ gexp(—rt(1 — q))’

which is a decaying function of time originated at r that asymp-
totically approaches (1 — g)r. The shapes of the fractional
dissolution rates are illustrated in Fig. 4a., where the time axis
is normalized by r (the mean dissolution time for the classical
model), and the axis for the fractional dissolution rate is normal-
ized with respect to 1/r (the fractional dissolution rate for the
classical model). Thus, the dependency on rin (13) is eliminated
and we can observe the dependency on g. The curves always
start at 1 and after a fast decay they slowly approach (1 — g).
For g close to zero the constant fractional dissolution rate
is obvious.
Forg = 1

,
1+’

k) = (14)
which is decaying function of time starting from r and reaching
asymptotically zero. In the normalized version, it can be seen
in Fig. 4a.

Dunne et al. (7) introduced the odds function g (1) = P(1)/
(1 — ®(r)) which represents the ratio of the probability that a
molecule will be dissolved before time ¢ to the probability that
it will not be dissolved and for (4) it takes the form,

exp(ri(l — g¢))— 1

e (15)

g(l(t) =

Saturation (g > 1)

In this situation to speak about dissolution would be com-
plicated because not all the administered amount dissolves and
thus, 7, is not a proper random variable, Prob(T, < «) =
1/q. Therefore, it is more intuitive to study the saturation time
T, defined by the cumulative distribution function (4) normal-
ized by 1/g. T; can be interpreted as the probability that a
randomly selected molecule of the drug, from the part of the
drug which will finally dissolve, will be dissolved before time ¢.

Using equation (4) with left-hand-side equal to 1/(2q), the
half-saturation time #,, can be calculated,

1 q
= 1
ST "(24 - 1)

and other percentiles can be evaluated, for illustration see Fig.
1. For the mean saturation time, MDT,, we have

MDT, =-l—ln( 4 )
r qg—1

(7a)

(8a)

which is illustrated in Fig. 2. The mean (8a) can be again
compared with the half-saturation time given by (7a). It holds
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Fig. 1. Half-dissolution and saturation time given by (7) and (7a) for
different values of r, from the top, r = %, 1, 2, in dependency on dose-
solubility ratio g.

like in the previous section that, ¢, << MDT;, which is mostly
pronounced for g close to one. The second moment E(T?) is

k
2 - {1\ 1
E(T? =—2 —-] =
7o (q—l)’2k=l<(1)k O

and combining (8a) and (9a) the relative dispersion can be
calculated,

cvz=

k
2 o (1} 1
-}— L 10
(q— 1?2 g’n(q) d (1
q g-1

Analogous to (10), the value of (10a) does not depend on r
and after some calculation we can show that CVZ > 1 for any
g, Fig. 3a. The relative dispersion (10a) reflects the same depar-
ture (11) from the exponential distribution as (10) if expressed
with respect to 1/g (see Fig. 3b).

The probability density of saturation time is &y(f) = gd ()
where ¢, is given by (12). Combining ¢,(f) and the scaled
version of (4), the fractional dissolution rate can be calculated,
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Fig. 2. Mean dissolution and saturation time given by (8) and (8a) for
different values of r, from the top, r = % 1, 2, in dependency on dose-
solubility ratio ¢. The initial point, at g = 0, gives the mean dissolution
time for the classical model (MDTex). The dependency is pronounced
only in the vicinity of the singular point ¢ = 1 for which MDT = oo,
MDT is almost constant for other values of g.
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Fig. 3. (a) Relative dispersion for dissolution and saturation time given
by (10) and (10a) in dependency on dose-solubility ratio g. The values
are always bigger than one and for g between 0.75 and 1.25 the
dependency becomes highly nonlinear. (b) The deviation of model (3)
from the classical model (EX) reflected by the bound (11) for both
g <1 and ¢ > 1 (presented as 1/g on the abscissa). We can see that
for ¢ < 0.6 (¢ > 10/6) the difference is less than 20%.

qr(l — q)

— 13
exp(ri(l — g)— g (132)

k() =
being a decaying function of time starting at rg and reaching
asymptotically (g — 1)r. The shape of the fractional dissolution
rates are illustrated in Fig. 4b., where the time axis is normalized
by r (the mean dissolution time for the classical model), and
the axis for the fractional dissolution rate is normalized with
respect to 1/r (the fractional dissolution rate for the classical
model). Again, this eliminates the dependency on r in (13a)
and we can study the dependency on 1/g. The curves always
start at g and after a decay they approach g — 1. For g close
to one, the behavior is the same as in Fig. 4a. For the odds
function we have,

1 — exp(rt(q — 1))
1-g¢ )

& = (15a)

Nonmonotonic Fractional Dissolution Rate

Equation (2) expresses that the fractional dissolution rate
monotonically decreases from k(0) = r to k(e), which implies
the dissolution rate is maximal at the time origin. A more
realistic picture would be an initial slow increase of the dissolu-
tion rate. A possible way how to describe this phenomenon
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theoretically is to replace the constant r in equation (3) by a
time variable r(f). To satisfy the condition ®'(0) = 0, we may
assume in the model that r(r) starts at the time origin (the
beginning of dissolution process) from being initially equal to
zero and gradually reaches its asymptotic level r. An example
of a function fulfilling such a requirement is

) = r(1 — exp(—t/)),

where T > 0 is a time constant characterizing the speed of (£
in achieving the constant level r. Solving (3) in which constant

(16)

A
\V

1
Fig. 4. Normalized fractional dissolution rates, k(¢)/r, as a function of normalized time, fr, and dose-
solubility ratio, ¢; 4a. ¢ < L, 4b. ¢ > 1, for details see the text.

r is replaced by time the varying function r(f) given by (16),
we obtain

_explrt+ 1™ - 1)1 —g)} — 1
exp{r¢ + e — D)1 - @} — ¢’

In Fig. 5a. there are examples of the shape of ®(¢) given by (17)
and we can see that by increasing T the initial slow dissolution is
more pronounced. Of course, for large ¢ with respect to T (17)
and (4) behave identically, but they are shifted with respect to
the time axis. Due to the delay of the dissolution caused by

16)) an
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Fig. 5. (a) Profiles of the fraction of the dissolved amount given by
(17), for r = 1 and g = 0.5, in dependency on time. The dashed curve
is for constant r (7 = 0), the full line curves from the left to the right
correspond to the values of time constant 7 = 0.5, 1, 2, 4 and 8. (b)
Fractional dissolution rates corresponding to ®(z) presented in Fig. 5a.

the fact that r(f) < r for all ¢, the mean dissolution time will
always be larger for (17) than for (4).

The result given by equation (17) can be generalized for
any non-negative integrable function r(f) describing the evolu-
tion of the time variable rate in (3). Let R() =
Jb r(s)ds, (R() = « is only a formal requirement), then

_exp(R(1 —q)) — 1
expR)(1 —q) — g~

In this way statistical characteristics derived in Sections 1.1
and 1.2 can be easily expressed. For ¢ < 1, the probability
density of T, is

— )2 —
o 0) = 00 _— g)” expR)(1 — q))

L0103

(18)

= s 19
PR — 9) — 97 (1%

and the fractional dissolution rate is
kAP = ri(1 — q) (20)

1 — gexp(—R®O( — q))°

Similarly for ¢ > 1, the fractional dissolution rate can be
calculated,

qgr(nd — q)
exp(R(Y(1 — q)) — q°

In both these cases, the fractional dissolution rate starts from
zero. However, their complete profile depends on the detailed

ky(r) =

(20a)

Lansky and Weiss

Table 1. Model Given by Equation (3)

%LS in W q r MDT MSC
0.25 1.996 0.024 29.50 7.58
0.50 1.016 0.053 78.30 9.21
0.75 0.268 0.060 19.45 8.81
1.00 0.880 0.144 16.75 8.15

Model EX

%LS in W q kex MDT MSC
0.25 2.180 0.045 22.17 744
0.50 1.287 0.054 18.62 5.68
0.75 1.028 0.056 17.73 9.38
1.00 1.081 0.094 10.57 5.26

properties of the function r(f), see Fig. 5b. There it is shown
that the shapes of kr) given by (20) range from monotonic
decay through non-monotonic behavior to monotonic growth.

APPLICATION AND DISCUSSION

We applied model (3) to the in vitro dissolution data (1)
of danazol capsules in different media (different 8 and constant
D), which were also used by Dokoumetzidis and Macheras (4).
The model, when fitted to the data, results in two independent
dimensionless parameters r and g, see Table 1. Further, the new
model was compared with the classical approach given by
equation (1) with k(f) = kgx, which predicts the following
dissolution profile,

D()) = 1 — exp(—thex)
implying that MDT = 1/kgx,
A(®) = A(®)(1 — exp(—#/MDT)).

Figure 6. shows the fits obtained with the new model; the
parameter estimates and the goodness of fit obtained with both

LN ASRLA S B A e 1

LAN B S S B B A S ey SN e S

Fraction dissolved

0 10 20 30 40 50 60

Time (min)
Fig. 6. The fraction of dose dissolved as a function of time for data
Shah et al. (1995). The squares are the danazol data (1, 0.75, 0.50,
0.25 % sodium lauryl suifate in water as dissolution medium; from

top to the bottom). The lines obtained from the fit of the model (3) to
the data, for details see text.
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models, equations (1) and (3), are summarized in Table 1. With
one exception the fits provided by the new model were superior
to those of the classical approach. The fit was evaluated by
nonlinear regression method using software package SCIEN-
TIST (MicroMath Scientific Software, Salt Lake City, UT) and
the goodness of fit assessed using the model selection criterion
of SCIENTIST (MSC-criterion) which is a modified AIC-
criterion. As expected, the difference between the MDT esti-
mates are pronounced near the solubility limit (saturation level)
and the classical case is per definition restricted to g > 1.

Note that all classical descriptions of dissolution, which
are based on the proportionality of dissolution rate to the con-
centration difference (C, — C(¢)), share the assumption that
the particle environment (dissolution medium) is homogeneous
(well-stirred). Further, note that the homogeneity or well-stirred
assumption implies a time-constant fractional dissolution rate
and the relative dispersion of dissolution time distribution
CV? =1 (e.g., 8). The present model aims to overcome these
restrictions. The model is empirical in so far that a physical
interpretation of the approximation of k(®) by a linear decreas-
ing function (2) is lacking. The fact that the new model allowed
a better fit of the dissolution data in the present example is of
course not a proof of its correctness; it simply means that the
model could not be rejected on the basis of the available data.
An important consequence is that MDT exceeds MDTgyx if D
is not much less than 6.

Recently Oh et al. (9) defined fundamental dimensionless
parameters to estimate the fraction of a dose absorbed under
in vivo conditions, Do and Dn. Note that our parameter ¢
corresponds to the parameter Do, which is the ratio of dose
concentration to solubility and that MDT is an important deter-
minant of Dn defined as the ratio between the residence time
of the drug in the intestine and MDT. Thus it may be interesting
to ask whether the values of MDT obtained by the present model
could be useful for prediction of in vivo drug absorption, (10).

Finally, it should be stressed the aim of the above model
is different from a statistical approach where various dissolution
curve-models are compared without making assumptions about
the dissolution process (11) as well as from more detailed
geometrical models of drug release from special dosage forms
of water-soluble compounds (e.g., 12).

APPENDIX

The following model is intended to give an example of a
possible mechanism which may cause the non-classical behav-
tor (i.e., the deviation from Noyes-Whitney equation). Many
aspects of the dissolution process (e.g., surface changes) are
not taken into account by this largely simplified model.

Let us assume that in a reaction vessel of volume V, at
time ¢, we have the concentrations (number of molecules per unit
volume) w(?) of free solvent molecules each taking a volume v,,;
s(f) of undissolved molecules of solute, each with effective
volume v, and c(?) of dissolved molecules of the drug complexed
with solvent, each complex with effective volume v.. So, it
holds,

w(tw,, + s@®v, + c(v,. = 1. (A1)

An obvious condition is that the complex molecule has a larger
volume than its components, namely v, < v, and v, < v.
Let us further assume that the dissolution process follows the
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chemical kinetics reaction s + w — ¢, with the rate k* and
taking into account that the solvent is initially free of the solute,
¢(0) = 0. So, the equation describing the complex formation is

de(t)

vy = k*w(Ds@), c(0)=0. (A2)
From conservation of matter law follows
s() + c(t) = DIV (A3)
and substituting it into (A2) we have
@ _ o [P -
ar k*w(r) v c), @ =0. (Ad)

From (A4), for the fraction of drug dissolved at time ¢ (®(r) =
c(HVID) holds
do@)

—= = k*w()(1 — D)), P(0) = 0.

o (A5)

If w(?) is sufficiently large that it is practically constant during
the dissolution process, w(f) = w, we obtained the classical
exponential law, in which k = k*w. However, if due to the
creating the complex the amount w(r) changes, then it has
to be taken into account in (AS5). Combining (A1) and (A3)
we have,

o) = — (1 2o~ vs)c(t)) (A6)
Vi Vv
and after substitution into (A4) we obtain
Aoy _ kX(V — v,D) _ve —v)D
d Vv, (l V- D ¢(,)>
X (1 — &), PO) =0. (A7)

Defining r = (k*(V — v,D)/Wv,) and g = ((v. — v)DIV — v,D)
we arrived to dissolution equation (3). Obviously, both constants
r and g are positive and g > 1 is equivalent to v.D > V| in
other words, the completely dissolved amount does not fit to
the vessel volume.
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